CE 297: Problems in the Mathematical Theory of Elasticity: Homework III

Instructor: Dr. Narayan Sundaram*

September 18, 2024

In the following, the positive sense is to be assumed when integrating over closed contours unless mentioned otherwise.

- 1. Expand the function $f(z) = \exp(z)/(1-z)$ in a Taylor series about the point $z_0 = i/2$. What is its radius of convergence?
- 2. Use the idea of formal multiplication and division of infinite series to write down the first 5 terms of the Maclaurin series of tan(z).
- 3. Let a > 0. Expand the function $f(z) = z/(a^2 z^2)$ in a Laurent series in powers of z when (i) |z| < a (ii) |z| > a
- 4. Consider $f(z) = \frac{z}{(z-2)(z+i)}$. Expand the function in Laurent series in powers of z when (i) |z| < 1 (ii) 1 < |z| < 2 and (iii) |z| > 2. Why is one of these series not like the other two?
- 5. Evaluate the following integrals

$$\oint_C \frac{1}{\cos 2z} dz \qquad \oint_C \tanh z \, dz$$

where C is the unit circle |z| = 1.

6. Analyze the singularities of the function $f(z) = \cot(z)$. Also find the order of any pole singularities.

^{*}Department of Civil Engineering, Indian Institute of Science

- 7. Show that the function $f(z) = \frac{(z-1)^2}{z(z+1)^3}$ has a pole of order 3 at z = -1 and find its strength.
- 8. Classify the singularities of the following functions, their locations, type, etc. Also consider the point at infinity.

(i)
$$\frac{z^3}{z^2 + z + 1}$$
 (ii) $\frac{e^{2z} - 1}{z^2}$ (iii) $\operatorname{coth} \frac{1}{z}$ (iv) $\frac{z^{1/3} - 1}{z - 1}$

9. Can the function

$$\sum_{n=0}^{\infty} z^{2n} \quad |z| < 1$$

be extended analytically outside the domain of its definition? If so, how?

10. Using cross-cuts and the notion of the residue of a function (coefficient of the $1/(z-z_0)$ term in the Laurent series), prove the following theorem: Let f(z) be holomorphic inside a simple closed contour C and continuous on C, except for a finite number of isolated singular points $z_1, z_2, ..., z_N$ which lie inside C. Then,

$$\oint_C f(z)dz = 2\pi i \sum_{j=1}^N a_j$$

where a_j is the residue of f(z) at $z = z_j$. This result is called the *Residue Theorem*.

11. Evaluate the integral

$$\frac{1}{2\pi i} \oint_C \frac{a^2 - z^2}{a^2 + z^2} \frac{1}{z} \, dz$$

where C is any simple closed contour enclosing the poles of the integrand.

12. Evaluate the following real integral using complex variable techniques:

$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} \, dx$$

Hint: You will need to close the contour using a semicircle.

13. Evaluate the following real integral using the Residue Theorem:

$$\int_0^\infty \frac{1}{(a^2 + x^2)^2} \, dx$$

where a > 0.

14. Establish the Schwarz reflection formula for inversion in the circle |z| = a using series.

15. Given the Cauchy integral

$$\Phi(z) = \oint_C \left(t^2 - \frac{1}{t} + \frac{1}{t^2}\right) \frac{dt}{t - z}$$

where C is the unit circle, find $\Phi^+(z)$, $\Phi^-(z)$, and the boundary values $\Phi^+(t)$ and $\Phi^-(t)$.

16. Evaluate the Cauchy Principal Value of the following real integral using the basic definition:

$$\int_{-a}^{a} \frac{s^2}{x-s} dx \quad -a < x < a \quad a > 0$$

17. Evaluate the Cauchy Principal value of the following integral *without* using the Plemelj formulae:

$$PV \oint_C \frac{dt}{t(t-4)(t-t_0)}$$

where C is the unit circle |z| = 1 and $t_0 \in C$. Clearly explain all steps.

18. Verify your result above by computing the left and right boundary values and applying the Plemelj formulae. How will your results change if C is the circle |z| = 5?